
Improving File System
Usability, Performance and

Reliability with Magnetic RAM

Ethan L. Miller
Storage Systems Research Center

Institute for Scalable Scientific Data Management
University of California, Santa Cruz

2

What is Magnetic RAM?
❖ Magnetic RAM (MRAM) is

• Random access: speed comparable to DRAM
• Non-volatile

❖ MRAM is byte-accessible
• No need to read or write full blocks

❖ MRAM doesn’t suffer wear
• No need for wear-leveling
• No limit on number of writes

❖ MRAM is now in production
• Freescale has been making chips for over two months

❖ MRAM is (currently) expensive
• Eventually cost comparable to DRAM
• New product -> expensive!

3

Why file systems for MRAM?
❖ File systems traditionally use disk as non-volatile

storage
• Large blocks / transfer sizes
• Expensive seeks
• Metadata size relatively unimportant

❖ MRAM provides
• Long-term storage
• Byte-addressability with low seek time
• High-speed access to complex metadata

❖ Problems:
• Cost is a major issue (≥ DRAM)
• File systems aren’t designed to take advantage of MRAM

❖ What should a file system for MRAM look like?

4

What should we keep in MRAM?
❖ Memory (non-volatile or otherwise) is expensive

• Keep small items in it?
• Keep recently used items in it?

❖ Large (data) transfers don’t benefit as much from
memory residence
• Most transfers are large and sequential
• Latency can be hidden with prefetching and writebehind

❖ Metadata is perfect for MRAM!
• Small transfers (often a word or two)
• Still very large: about 1% of total file system size
• Reduce memory demands with new metadata structures and

compression
• Allows the construction of richer metadata structures that

might require non-sequential accesses

Outline
❖ Introduction to MRAM for file systems

❖ LiFS: Linking File System
• More effective searching and organization
• Made possible by MRAM’s speed

❖ Compressing metadata in MRAM
• Making the most of a scarce resource

❖ MRAM reliability techniques
• Making MRAM safe for file systems

5

The problem with metadata
❖ The number of files is dramatically increasing

• Disk capacity is far larger
• Applications like to use lots of files

❖ How can we organize them?
• Directories?

- Good model for few files, but not for billions!
- Difficult for general directed graphs: files are

typically in only one directory
• Applications?

- Many apps manage their own files
- Works (somewhat) but makes sharing difficult

6

The solution: attributes & links
❖ Extend application approach into the file system

• Provide primitives to manage the relationships
• Allow multiple apps to use the same files and links

❖ Sharing is easy
• File system maintains the relationships

❖ Searching is now possible...

7

Application A Application B

File system

Search

RelationshipsAttributes

MRAM makes this possible
❖ Directed links between

files to show relationships
❖ Links have attributes

• Express the type of
relationship between the
files

• Describe the link itself
❖ Lots of links means lots of

“seeks”
• MRAM makes this fast

❖ Links are small
• MRAM has low latency

❖ Searching can be slow
• Keep the indices in MRAM

8

name: bar
user: carlosm

name: x
user: elm

name: foo
user: elm,carlosm

name: bar
user: elm

elm: path = “foo/x”
carlosm: path= “foo/bar”

elm: path = “foo/bar”
carlosm: no path!

New system calls

9

System Call Function

rellink Create relational link

rmlink Remove relational link

setlinkattr Set attributes on link

openlinkset Return handle to all the links
from a file

readlinkset Get name and attributes of next
link in the set

Implementation

10

❖ FUSE: maps VFS calls
back into user space

❖ MRAM: system memory
locked into DRAM
• Not yet using MRAM...

❖ Custom MRAM allocator
with fixed-size pools
• Efficient to allocate and

free small objects
❖ Optimizations

• String table
• Full path name cache

user space

kernel space

client app user space daemon

LiFS

FUSE kernel moduleLinux VFS

Evaluation
❖ Metrics

• Traditional FS operations: compare to other file
systems

• New FS operations: scalability
• FUSE overhead

❖ Experimental setup
• Sun workstation running Linux 2.6.9-ac11
• AMD Opteron 150 @ 2.4 GHz
• 1 GB DRAM

11

Performance: Files
❖ Create a directory tree

with empty files
• 15620 files

❖ Read all of the files
❖ File systems are “fresh”

❖ LiFS is competitive

12

0

1

2

3

4

Create Files Read Empty Files

LiFS w/FUSE
ext2 w/FUSE
XFS w/FUSE

D
ur

at
io

n
(s

ec
on

ds
)

Performance: File Attributes

13

0

0.375

0.750

1.125

1.500

Li
FS

 (
FU

SE
)

Li
FS

 (
FU

SE
/R

D
)

ex
t2

 (
FU

SE
)

ex
t2

 (
R

D
)

ex
t2

 (
FU

SE
/R

D
)

ex
t2

Get 2 Attrs
Set 2 Attrs

0

2.375

4.750

7.125

9.500

2 20

ext2 (FUSE) SetAttr
LiFS (FUSE) SetAttr
ext2 (FUSE) GetAttr
LiFS (FUSE) GetAttr

D
ur

at
io

n
(s

ec
on

ds
)

D
ur

at
io

n
(s

ec
on

ds
)

Create / Remove Directories

14

111,110 directories
LiFS outperforms ext2 with FUSE and RAM disk

D
ur

at
io

n
(s

ec
on

ds
)

0

30

60

90

120

150

ext2 (FUSE) ext2 (FUSE/RD) LiFS (FUSE) LiFS (FUSE/RD)

Create Dirs Remove Dirs

Create / Delete LiFS Links

15

❖ Test on 15,620 files
❖ Processed 15,620 random

links
❖ More attributes make

link identification slower
• Need to traverse

structures to identify
desired link

0

0.75

1.50

2.25

3.00

Cre
ate

 Li
nk

s

Cre
ate

 A
ttr

ibu
tes

Rem
ov

e L
ink

s

2 Attrs/Link 30 Attrs/Link

D
ur

at
io

n
(s

ec
on

ds
)

Compressing Metadata in
MRAM
❖ LiFS promises lots of additional functionality,

but...
❖ MRAM is expensive!

• Currently, much more than DRAM
• Eventually, costs drop to about DRAM costs

❖ Important to save space in MRAM if possible:
compress metadata
• Reduces MRAM requirements
• May improve speed by reducing the amount of data

moved
• Byte-accessible MRAM makes this feasible

16

17

Metadata in Unix
❖ Metadata is stored in

inodes
• Timestamps
• Ownership
• File size
• Link count

❖ Directories point to
inodes
• Inodes themselves don’t

contain names
❖ Total size is about 54

bytes
• Times, size are 64 bit

fields

Protection mode Link count

Size

Block count

Create time

Access time

Modify time

User ID
Group ID

Generation
Flags

18

Compressing metadata
❖ Most metadata is compressible

• Integers have small values (link count, size)

• Times can be expressed as offsets

• Permissions can be table-based
❖ Compression is effective

• 15–20 bytes per inode on typical file systems (factor of 2.5–3.5)

• Inodes are variable-sized: compression rate varies
❖ Can this be used in a real file system?
❖ How does it affect performance?

19

Inodes and file data
❖ Fields in the inode are gamma compressed

• Small numbers compress very well
• Timestamps are encoded as deltas from earliest time

❖ Permissions are table-based
• Table contains all unique combinations of <user ID, group ID,

permissions>
- Most common combinations stored early in the table

• Location in table of this inode’s permissions is gamma-
compressed

• Table could easily be extended to handle ACLs…
❖ File data stored in compressed blocks

• Linked list of block pointers
• Random seeks not slow: pointer chasing is in RAM
• Hybrid on-disk / MRAM-based system will need some minor

changes

20

Separation of MRAM and DRAM
❖ Most memory-based file systems simply use the

caching structures as “permanent” storage
• Very fast: almost no copying
• Inefficient: caches designed for very fast lookup at

the cost of higher memory usage
• Unsuitable for MRAM / DRAM systems

- Must build the whole system from MRAM
- No way to “start clean”

❖ MRAMFS explicitly copies from non-volatile
memory to DRAM
• Metadata and data copied back and forth
• Can be slower for large operations
• May be more reliable: fewer code points where

permanent store is accessed and modified

21

Postmark benchmark results

All file systems in main memory
All file systems faster than disk-based

Taller bars ➙ faster performance

22

Postmark results
❖ All of the file systems run in-memory

• Ext2 slowest by far: sequential directory handling
• JFS very fast
• MRAMFS comparable to ReiserFS
• MRAMFS slightly slower than XFS, JFFS2

❖ All but JFFS2 are uncompressed
• Memory usage higher by a factor of about 3
• JFFS2 compresses blocks: not as efficient for inodes

❖ Compressed inodes faster in MRAMFS!
• Less metadata copied: faster performance
• Compression can provide speed increase by avoiding

accesses to (relatively) slow DRAM

23

Compression reduces MRAM
demand
❖ File systems will run much faster with non-volatile

memory
• Don’t need to read metadata from disk
• Don’t write metadata back to disk
• Fast access to parts of an inode

❖ Compression of metadata can reduce memory usage and
thus cost
• Factor of 2–3 or more
• May save time, too: less data movement between (relatively)

slow main memory and cache
❖ Alternate file structures can make efficient use of

MRAM and other non-volatile memories
• Relatively small allocation chunks
• Simple, reliable file system design
• No need for complex structures that may introduce bugs

24

Making MRAM file systems safe
❖ MRAM advantages

• Fast metadata access
• Richer metadata structures
• Reduces sync and transfer overhead
• File system log for fast recovery
• Fast, on-line consistency checking

❖ MRAM disadvantages
• Wild writes from buggy software

- Potentially much less “control” than with disk-based
file systems: no centralized I/O access routines

• Bit flips on MRAM
❖ How can this corruption can be prevented?

25

Solution: Two-Level Approach
❖ Attack the problem on multiple levels

• Guard against memory corruption due to OS mistakes
• Check file system operations to make sure that

they’re correct

❖ Memory consistency
• Page-level write protection
• Error Correcting Codes (carefully chosen)

❖ File system consistency
• Log/periodically check structure changes
• On-line checks (log replay)

26

Design: Protected NVRAM
❖ MRAM is partitioned into regions (unprotected/protected)
❖ Protected region

• Collection of (data, parity)-blocks
• Write protection at page-level (4KB)
• Each (data, parity)-block is a codeword

❖ EVENODD as ECC
❖ Requires systematic encoding

Data

Data

Parity

Protected page

Each cell represents

an encoded block

MRAM

27

Design: Mapping Data to
EVENODD

Data block EVENODD matrix

Addresses

A
d

d
re

s
s
e

s

Parity (ECC)

❖ Visualize the data block as a 1D array mapped to
2D array

❖ Can tolerate any one column error (bursts)

28

Write Algorithm: identify
location

Step 1: Identify address and write size

Data Page Parity Page

write <addr, data, size>

29

Write Algorithm: copy to scratch
Step 2: Copy corresponding data/parity

sections out to “scratch”

Scratch

Data Page Parity Page

Copy to scratch

30

Write Algorithm: update in
scratch area

Step 3: Write change in scratch region, compute parity

Scratch

Data Page Parity Page

Write modified data

Compute and

write parity

31

Write Algorithm: write back
changes
Step 4: Unlock pages and write changes (vulnerable)

Scratch

Data Page Parity Page

32

Write Algorithm: check writes

Step 5: Lock pages and check for errors

Data Page Parity Page

33

Design — Transaction Log
Transaction Log State Table

inode number
inode state

Created for
each fs call

Each transaction may
consist of multiple

operations on
multiple inodes

T2 Tn

ops OPj•••

T1 •••

ID OP data

OP1

Index State

<ID1> S(ID1)

<ID2> S(ID2)
••• •••

<IDk> S(IDk)

34

Consistency Checking
Transaction table (constructed from log)

Pending inode List Files that have NOT been checked

Clustered log entries

2 3 1 7

1 1 1

2 2 7

3

35

Consistency Checking
Algorithm
❖ Initialize new log and state table
❖ Insert entries into transaction table and pending

list
❖ For each inode on the pending list

• If entry exists in “live” state table
- Get next inode

• If entry does not exist in the “live” state table
- Fetch inode state from the “old” state table
- Replay all ops in the transaction table
- Compare replayed inode to “live” inode

• Inconsistency if replay does not match “live” inode
❖ Requires O(1) lookup and replaying operations
❖ Block checks on NVRAM

36

Prototype Implementation
❖ Implemented in LiFS
❖ Implemented protected regions in MRAM

allocator
• Required additional calls in the interface
• mprotect
• EVENODD

❖ Logged metadata operations in LiFS calls
• All except extents and xattrs

❖ Implemented On-Line Consistency Checker
• Currently outside of LiFS, but can read LiFS log
• Currently builds structures outside of protected area
• Persistent structures can be stored in protected

area

37

Prototype Performance
❖ Setup

• 200 MB protected “MRAM” region
• LiFS running through FUSE
• EVENODD(96,64) and EVENODD(288,256)

❖ Fault Tolerance
• Inject faults into protected region
• Aggressively spawn threads that illegally write to region
• Inject faults while performing valid writes to the region

❖ Raw write performance
• Gives overhead for each prototype component

❖ File system write performance
• Use a metadata write-centric workload

❖ Consistency Check Latency
• Use same write-centric workload

38

Performance: Fault Tolerance
❖ Targeted entire 200 MB region

• Performed 250,000 16-byte writes
• Injected invalid writes while running workload

❖ Roughly 10,000 invalid writes were injected
• 180-237 injected writes escaped page protection
• 89-94% of these are caught by the EVENODD
• Why not 100%?

- Injected writes over-written by valid writes

39

Performance: Raw Writes
❖ Most of the time is spent

in mprotect
• Mprotect: system call to

protect memory
❖ Takes roughly 3 seconds

to perform 250,000
writes
• “Block” writes: small

writes coalesced
❖ Without mprotect the

same workload takes 1
second

mprotect
64%

decode
18%

encode
15%

structure
3%

mprotect decode
encode structure

40

File System Performance with
Consistency Checking
❖ Create 100 directories
❖ Write 100–500 files to

each directory
❖ Create links for each file
❖ Perm changes to file

metadata
❖ Tests run with

• Full protection
• No mprotect
• Only logging
• Vanilla LiFS

0

50

100

150

200

250

300

100 200 300 400 500

ALL_PROT_256 ALL_PROT_64
NO_PROT_256 NO_PROT_64
LOGGING ONLY LiFS

La
te

nc
y

(s
ec

on
ds

)
Files per directory (100 directories)

41

Performance: On-Line Check
❖ Generated a log in LiFS

• Same as latency workload (100 dirs/100-500 files)
• Created 120,500–2.1 million operations

❖ Ran consistency checker outside of LiFS
• Latency from less than 1 to 5.5 seconds

Related Work
❖ Queryable file systems

• Expressive queries
• Links don’t have attributes (only files)
• Advanced commercial file systems

- Spotlight (Apple)
- ZFS (Sun)
- WinFS (eventually...)

• Somewhat slow: information on disk
❖ In-memory file systems

• Lack advanced file system features (links, searching)
• No compression
• Often treat memory as a block device (flash RAM)
• Database research on utilizing persistent memory

❖ The Semantic Web
42

43

Future Work
❖ Push LiFS with these mechanisms into the kernel
❖ Distributed metadata using LiFS-based models
❖ RAID algorithms on multiple banks of MRAM
❖ Explore different approaches to data structures

and compression
❖ Coding

• Incorporate logging code for extents and x-attrs
• Integrate the consistency checker into LiFS
• Experiment with other ECCs
• Allow communication between the MRAM-level

mechanisms and the consistency checker

44

Conclusions
❖ MRAM promises big improvements for file

systems
• Richer metadata
• Higher performance
• Lower space requirements
• Higher reliability

❖ Linking file system provides functionality
currently unavailable

❖ Compression ensures that the metadata fits in
MRAM

❖ Error correction and online consistency checking
keep the metadata safe

Questions?
❖ Thanks to our sponsors:

• National Science Foundation
• SSRC industrial sponsors
• LANL

❖ Thanks to MRAM team members
• Carlos Maltzahn, Scott Brandt
• Sasha Ames, Nikhil Bobb, Karl Brandt, Nate Edel,

Kevin Greenan, Adam Hiatt, Owen Hofmann, Alisa
Neeman, Mark Storer, Deepa Tuteja

❖ http://www.ssrc.ucsc.edu/proj/scm.html

45

http://www.ssrc.ucsc.edu/proj/scm.html
http://www.ssrc.ucsc.edu/proj/scm.html

